Inference for the Proportional Hazards Family under Progressive Type-II Censoring
Authors
Abstract:
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric and asymmetric loss functions. We also provide Bayes and empirical Bayes prediction intervals for the times to failure of units censored in multiple stages in a progressively censored sample. Finally, two numerical examples are given to illustrate the results.
similar resources
Point Prediction for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, we discuss dierent predictors of times to failure of units censored in multiple stages in a progressively censored sample from proportional hazard rate models. The maximum likelihood predictors, best unbiased predictors and conditional median predictors are considered. We also consider Bayesian point predictors for the times to failure of units. A numerical example and a Monte C...
full textInference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...
full textStatistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal
This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...
full textInference for the location and scale parameters of the Rayleigh distribution under type-II double censoring
This article has no abstract.
full textEstimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
full textMy Resources
Journal title
volume 8 issue None
pages 0- 0
publication date 2009-11
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023